Atmospheric-Pressure Plasma Jet Processed Pt-Decorated Reduced Graphene Oxides for Counter-Electrodes of Dye-Sensitized Solar Cells
نویسندگان
چکیده
Ultrafast atmospheric-pressure plasma jet (APPJ) processed Pt-decorated reduced graphene oxides (rGOs) were used as counter-electrodes in dye-sensitized solar cells (DSSCs). Pastes containing rGO, ethyl cellulose, terpineol, and chloroplatinic acid were screen-printed and sintered by nitrogen dc-pulse APPJs. Pt nanodots were uniformly distributed on the rGO flakes. When using Pt-decorated rGOs as the counter electrodes of DSSCs, the efficiency of the DSSC first increased and then decreased as the APPJ processing time increased. Nitrogen APPJs can effectively remove organic binders and can reduce chloroplatinic acid to Pt, thereby improving the efficiency of DSSCs. However, over-calcination by APPJ can damage the graphenes and degrade the DSSCs. The addition of Pt mainly improves the fill factor, which thereby increases the efficiency of DSSCs. The optimized APPJ processing time was merely 9 s owing to the vigorous interaction among the rGOs, chloroplatinic acid and nitrogen APPJs.
منابع مشابه
Rapid Atmospheric-Pressure-Plasma-Jet Processed Porous Materials for Energy Harvesting and Storage Devices
Atmospheric pressure plasma jet (APPJ) technology is a versatile technology that has been applied in many energy harvesting and storage devices. This feature article provides an overview of the advances in APPJ technology and its application to solar cells and batteries. The ultrafast APPJ sintering of nanoporous oxides and 3D reduced graphene oxide nanosheets with accompanying optical emission...
متن کاملRecent development of carbon nanotubes materials as counter electrode for dye-sensitized solar cells
Dye-sensitized solar cells present promising low-cost alternatives to the conventional Silicon (Si)-based solar cells. The counter electrode generally consists of Pt deposited onto FTO plate. Since Pt is rare and expensive metal, nanostructured carbonaceous materials have been widely investigated as a promising alternative to replace it. Carbon nanotubes have shown significant properties such...
متن کاملNovel counter electrode catalysts of niobium oxides supersede Pt for dye-sensitized solar cells.
Synthesized niobium oxides (Nb(2)O(5) and NbO(2)) were applied for the first time as counter electrodes (CEs) in dye-sensitized solar cells (DSCs). The DSC using NbO(2) CE showed a higher power conversion efficiency of 7.88%, compared with that of the DSC using Pt CE (7.65%).
متن کاملEfficient Nickel Sulfide and Graphene Counter Electrodes Decorated with Silver Nanoparticles and Application in Dye-Sensitized Solar Cells
We reported a facile two-step electrochemical-chemical approach for in situ growth of nickel sulfide and graphene counter electrode (CE) decorated with silver nanoparticles (signed NiS/Gr-Ag) and served in dye-sensitized solar cells (DSSCs). Under optimum conditions, the DSSC achieved a remarkable power conversion efficiency of 8.36 % assembled with the NiS/Gr-Ag CE, much higher than that based...
متن کاملSelf-assembled monolayer of graphene/Pt as counter electrode for efficient dye-sensitized solar cell.
Monolayer of PDDA/graphene/PDDA/H(2)PtCl(6) is fabricated on conductive glass using electrostatic layer-by-layer self-assembly technique, which is then converted to graphene/Pt monolayer for use as counter electrode in dye-sensitized solar cell (DSSC). As compared to the sputtered Pt counter electrode, the self-assembled monolayer reduces the Pt amount by about 1000-fold but exhibits comparable...
متن کامل